
High resolution precipitation analysis and forecast validation over complex terrain using an inverse VERA approach

Benedikt Bica

Institut für Meteorologie und Geophysik Universität Wien

Overview

1. VERA

- ✓ Methode
- ✓ Example of fingerprint use
- ✓ Interpretation of weighting factors
- ✓ Inverse approach for model validation

2. Case studies for model validation using the inverse fingerprint approach

- ✓ MAP IOP-2b
- ✓ August 2005 flooding event
- ✓ Linear model for upslope precipitation

Problems of capturing precipitation amounts and modelling precipitation

- inaccurate measurements
 - wind error
 - moistening of rain gauge
 - evaporation
 - spray
 - drifting snow
- high spatial variability
- stratiform, convective
- complex influence of topography
- problemes of error correction
- Precipitation is positive-semidefinite

•

Methode: A one minute crash course

Cost function

$$J_K(f,\tilde{f}) = \sum_{k=1}^K w_k \left(f(x_k) - \tilde{f}(x_k) \right)^2 \to \text{Min }!$$

Penalty function

$$J_P(f) = \int_{x_1}^{x_2} \left(\frac{\partial^n f(x)}{\partial x^n}\right)^2 dx \to \text{Min }!$$

$$J(f, \tilde{f}) = J_K + \gamma J_P \to \text{Min}!$$

Combination of functionals

$$J(f) = \int_{x_1}^{x_2} \left(f'(x)^2 + f''(x)^2 \right) dx \to \text{Min } !$$

Smoothness condition

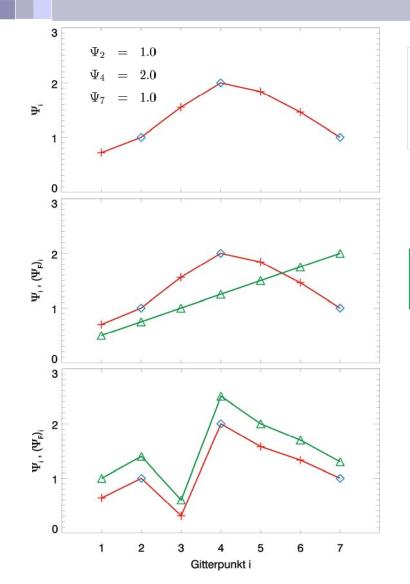
Application on meteorologcal fields Ψ and integration of a fingerprints Ψ_F

$$J(\Psi) = \sum_{i} \left(\frac{\Delta \Psi}{\Delta x} \Big|_{i} \right)^{2} + \sum_{i} \left(\frac{\Delta^{2} \Psi}{\Delta x^{2}} \Big|_{i} \right)^{2} \rightarrow \operatorname{Min} !$$

$$\frac{\Delta \Psi}{\Delta x} \Big|_{i} = \frac{\Psi_{i+1} - \Psi_{i}}{\Delta x}, \quad i = 1, \dots, n-1$$

$$\frac{\Delta^{2} \Psi}{\Delta x^{2}} \Big|_{i} = \frac{\Psi_{i-1} - 2\Psi_{i} + \Psi_{i+1}}{\Delta x^{2}}, \quad i = 2, \dots, n-1$$

$$\Psi_{i} = (\Psi_{U})_{i} + c (\Psi_{F})_{i} \qquad (\Psi_{U})_{i} = \Psi_{i} - c (\Psi_{F})_{i} \qquad \Delta x = 1$$


$$J\left((\Psi_U)_i\right) = \sum_{i=1}^{n-1} \left((\Psi_U)_{i+1} - (\Psi_U)_i\right)^2 + \sum_{i=2}^{n-1} \left((\Psi_U)_{i-1} - 2\left(\Psi_U\right)_i + \left(\Psi_U\right)_{i+1}\right)^2 \to \text{ Min}$$

 $\frac{\partial J(\Psi_i, c)}{\partial \Psi_i} = 0$ yield LSE with solution $(\Psi_U)_i$ (unknown) and c $\frac{\partial J(\Psi_i, c)}{\partial \Psi_i} = 0$

Steinacker et al. 2006 Steinacker et al. 2000

Analysis with and without fingerprint

0	1 8 1 0 0	8	$0 \\ 0 \\ -5 \\ 7 \\ 0$	0 0 0 0 0	$\left(egin{array}{c} \Psi_1 \ \Psi_3 \ \Psi_5 \ \Psi_6 \ c \end{array} ight)$	=	3 15 9 1 0	$\Big)$
$\forall i$: ($\langle \Psi_F angle$) _i =	= 0				

 $(\Psi_F)_i = \frac{1+i}{4}$

Ψ_1	=	326/451 = 0.7228
Ψ_3	=	701/451 = 1.5543
Ψ_5	=	831/451 = 1.8426
Ψ_6	=	658/451 = 1.4590

Ψ_1	=	343/493 = 0.6957
Ψ_3	=	768/493 = 1.5578
Ψ_5	_	908/493 = 1.8418
Ψ_6	=	719/493 = 1.4584
с	=	0.2028

 Ψ_1

 Ψ_{2}

 Ψ_5

= 0.64

= 0.31

= 1.58= 1.33

= 0.88

r = [1.0, 1.4, 0.6, 2.5, 2.0, 1.7, 1.3]	

$$\Psi_F = [1.0, 1.4, 0.6, 2.5, 2.0, 1.7, 1.3]$$

$$\Psi_F = [1.0, 1.4, 0.6, 2.5, 2.0, 1.7]$$

How to interprete the weighting factor c

$$\Psi_i = (\Psi_U)_i + c (\Psi_F)_i \qquad c = 1 \iff \Psi_i = \Psi_U + (\Psi_F)_i$$

$$c = 0 \quad \Longleftrightarrow \quad \Psi_i = \Psi_U$$

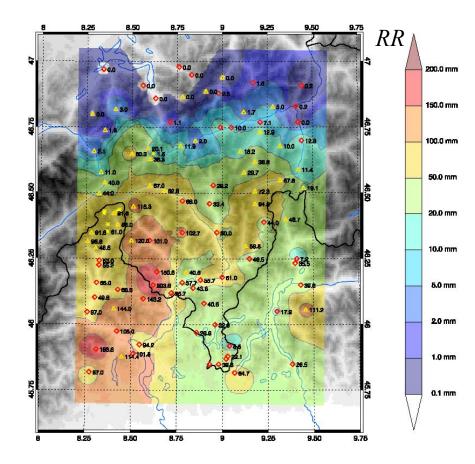
Observations and fingerprint on the same scale (normalisation)

- $c = 1 \rightarrow$ fingerprint is exactly represented by data
- $c = 0 \rightarrow$ no signal of fingerprint in data
- $c < 0 \rightarrow$ inverse fingerprint signal in data
- $c > 1 \rightarrow$ above average signal in data

Inverse fingerprint approach: Why and how ?

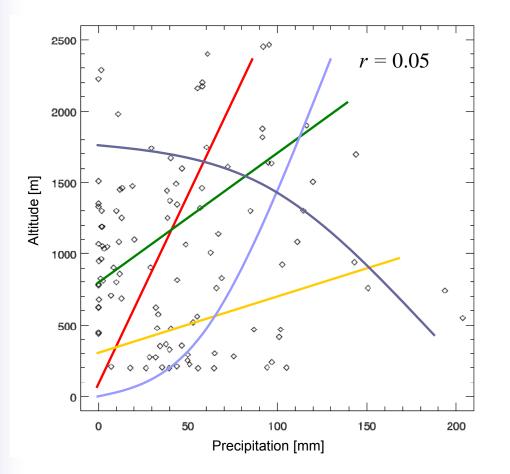
<u>Goal</u>

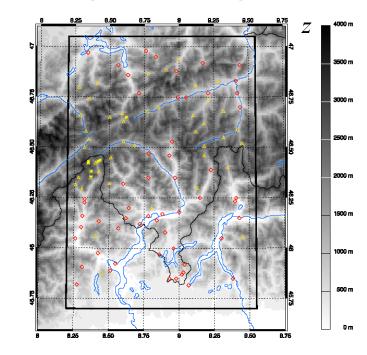
- Overview of spatial variability of weighting factors *c*
- Local validation of the fingerprint-model using observations


Approach in case studies

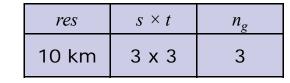
- 1. Specification of fingerprint and observations
- 2. Realisation of analyses with different parameter setting:
 - Resolution (res = 1, 2, 5, 10 km)
 - Subdomain size ($s \times t = 3 \times 3$, 5×5 , 7×7 , 9×9 , 11×11 , 13×13 grid points)
 - Minimum number n_g of stations per subdomain ($n_g \ge 2$)
- 3. Statistical evaluation of resulting *c*-fields
 - Mean value, median, standard deviation, IQR, etc.
 - Histograms showing frequency distribution of *c*-values
 - If applicable: areal representation of *c*-fields

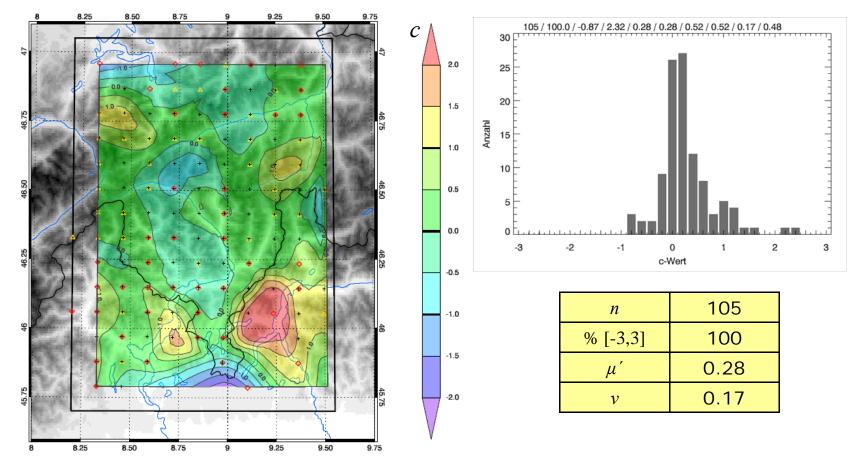
Case studies: MAP IOP-2b


- MAP IOP-2b
 19-20 September 1999
 - 24 h accumulated precipitation
 - 107 observations from LMTA
 - partially convective character
- Used fingerprints
 - Linear increase of precipitation with height ("topographical fingerprint")
 - Fingerprint of upslope rain

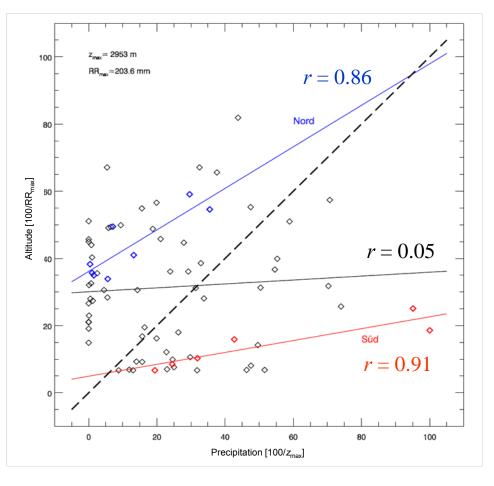

Is there a height dependence of precipitation ?

?




Topographical fingerprint

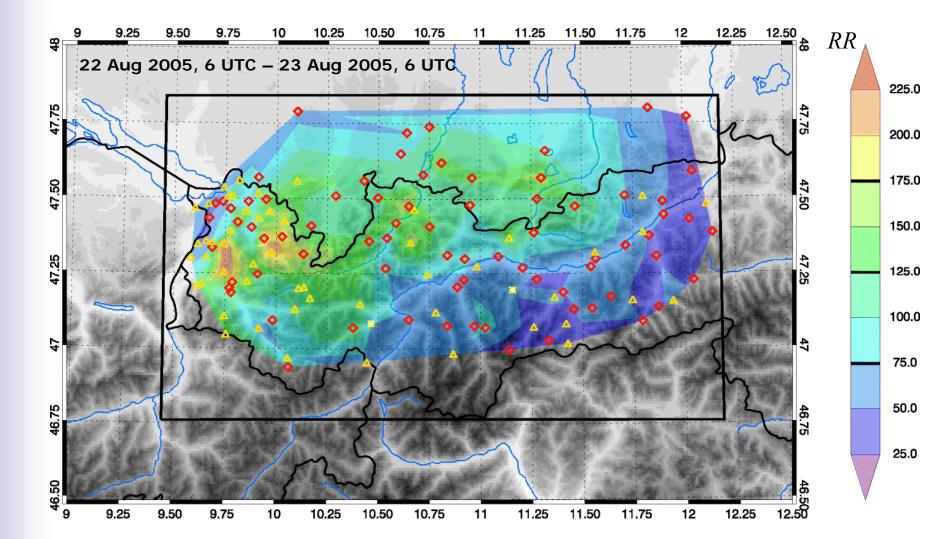
Height dependence of precipitation during IOP-2b

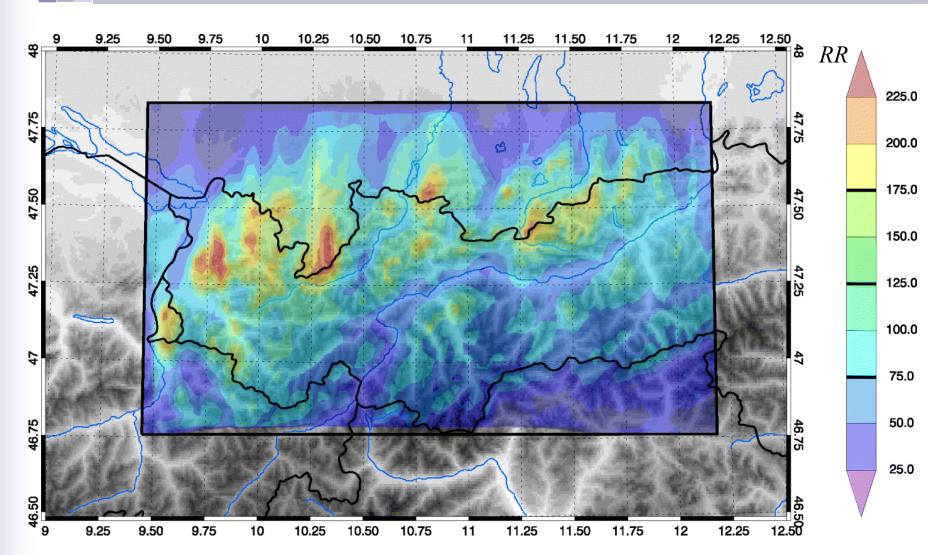


Regionalisation of results

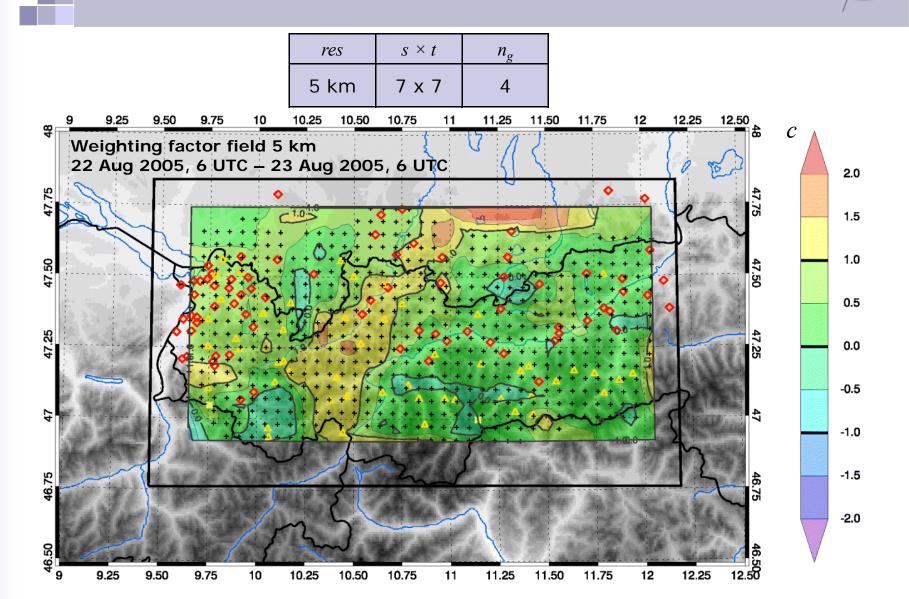
$x [\mathrm{km}]$	$y \; [\mathrm{km}]$	c	z [1]	RR [1]	entspricht Station(en)
10	10	0.50	15.9	42.7	Varallo Crosa Vivaio Forestale
10	20	0.61	25.1	95.1	Sambughetto
10	40	0.82	8.5	24.5	Domodossola Fraz. Nosere
10	50	1.07	10.3	31.9	Crevola
30	50	0.52	18.6	100.0	Camedo
90	50	1.10	6.7	19.4	Adda a Fuentes
80	90	0.77	54.6	35.5	Hinterrhein
90	100	1.05	41.0	13.2	Splügen Dorf, Andeer
10	110	0.54	35.7	1.0	Guttanen
20	110	0.79	59.1	29.6	Göscheneralp
30	110	0.68	49.5	7.1	Gütsch ob Andermatt, Göschenen
90	110	0.53	33.9	5.6	Safien Platz, Thusis
10	120	1.11	38.3	0.4	Gadmen, Stöckalp
20	120	1.15	35.0	1.5	Engelberg

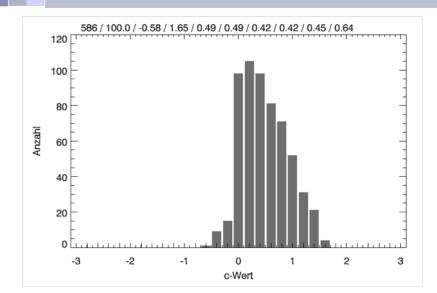
August 2005 flooding event Local validation of MM5 fields

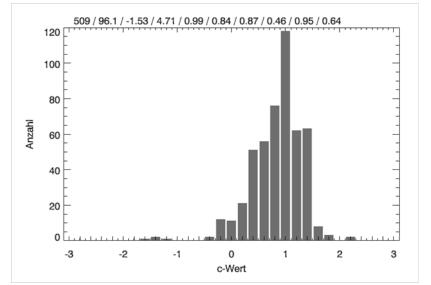




August 2005 flooding event Observations



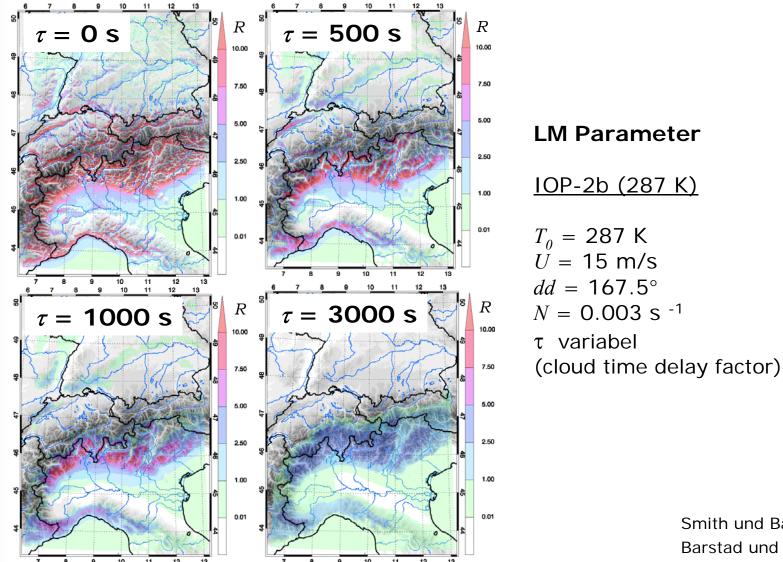

MM5 precipitation field



Results of inverse fingerprint approach

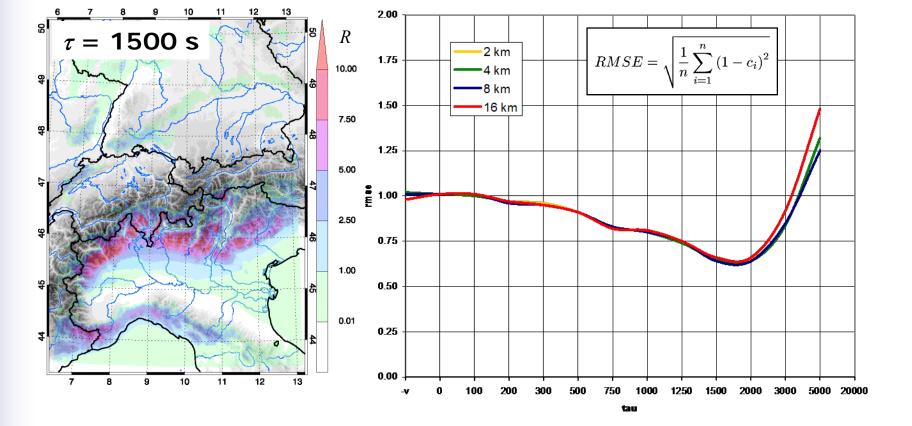
Two different configurations

res	$s \times t$	n _g		
5 km	7 x 7	4		


п	586
% [-3,3]	100
μ´	0.49
v	0.45

res	$s \times t$	n _g	
1 km	11 x 11	4	

п	509
% [-3,3]	96.1
μ´	0.84
v	0.95



IOP-2b: Assignment of model parameters using a "Linear model of upslope precipitation"

Smith und Barstad 2004 Barstad und Smith 2005

IOP-2b: Assignment of model parameters using a "Linear model of upslope precipitation"

rmse for lam=9.829, phi=46.829, 100x100km, var=1.5, T₀=287 K optimum=0

- Ways of including supplementary knowledge (fingerprint) into a variational approach (VERA) have been examined
- Fingerprint technique uses *variable weights*
- Application
 - directly, for downscaling purposes (local-variability)
 - indirectly (inverse approach) for locating predefined patterns in meteorological fields
- If observations and fingerprint match at least locally, analysis quality can be improved significantly
- Evaluation of local variability of fingerprint weighting factors facilitates objective comparison of fingerprint field and observations

Thank you !